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PREFACE

Turbulent and fluid-flow phenomena have an important influence on

atmospheric and oceanic circulation, and are hence expected to be of

considerable concern in modeling weather situations, and estimating the

consequence of weather-modification attempts. For reasons of simpli-

fying an already very complicated problem, past theoretical turbulence

work has been largely restricted to an idealization called homogeneous

turbulence. In this report an effort is made to extend one kind of

turbulence theory, a theory for "nearly Gaussian" processes, to the

more general and more practical class of problems involving nonhomogen-

eous flows.

An equilibrium energy spectrum for the turbulence in such prob-

lems is found. It is one which approximates many experiments re&son-

ably well. A hypothesis for one term in the theory is proposed, and

the present theory is used to correct the empirical "mixing length"

theory of turbulence.

Dr. Meecham performed this study as a consultant to The RAND

Corporation. He and Dr. D. -t. Jeng are associated with The University

of California, Los Angeles.
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ABSTRACT

Earlier work with the nearly-normal expansion is extended to in-

clude forced, statistically stationary turbulence. The nature of the

time-transformation of the Cameron-Martin-Wiener representation is dis-

cussed. For a stationary process t obtaintmuch information using the
I - -2

representation at one time. AF6r real turbulence we find E(k) . k2;

this spectrum is discussed/and shown to be related to turbulence inter-

mittency. Using a hypothesis for the (small) non-Gaussian part of the

velocity -- a hypothesis suggested by earlier work -- a corrected mixing-
vsoiY.( V, 1uIL(a 1 - -27

length theory is found with an eddy -iscost  - 2kO )

with al,a 2 dimensionless, positive and of the sa--order; k 0 the

wave number of the spectrum maximum, and u' and I the rims velocity

fluctuation and the turbulence correlation length respectively.
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I. INTRODUCTION

In recent work we have described the use of nearly-normal expan-

sions (based on the work of Cameron and Martin, and that of Wiener) (1'2 )

for the representation of turbulence. The expansions were used

to deal with problems of decaying turbulence, rndeled 
and real.( 3 -5 )"

In Ref. 3 the correct equilibrium energy spectrum [E(k) - k'2] was ob-

tained for Burgers' model turbulence. To do this, a hypothesis was

used that concerns the nature of the non-Gaussian term in the velocity

field. The same result can be obtained, without hypothesis, for a sta-

tionary Burgers' process. (6) It is known that the Cameron-Martin-Wiener

expansion is not uniform in time for nonforced processes. ( 6 -8 ) Thus,

although the expansion may converge rapidly initially, at later times

the convergence becomes less rapid even for nearly normal processes.

Nevertheless, it has been found that the convergence is adequate for

the treatment of real wind-tunnel turbulence, for up to six correlation

times (or 120 mesh lengths downstream from the wind-tunnel 
grid). (5 )

The expansion has certain virtues not possessed by some other represen-

tations for turbulence. These advantages have been emphasized in earlier

work and will not be recalled here.

In most practical problems involving turbulence, one is faced with

statistically inhomogeneous turbulence, which is frequently driven and

approximately in statistical equilibrium. The driving source is very

often found in large-scale effects deriving their energy from the mean

flow. For example, we point to the existence of turbulence in the

lower atmosphere which is driven by wind shear in that region. Another

important application is in turbulent wakes, for instance of re-enter-

ing vehicles. In such applications we find the turbulence driven by

large eddies which couple into the mean shear flow and derive their

energy from that flow.

We shall here replace the large-scale energy sources by an equiva-

lent forcing term. We suppose that the process has existed long enough

that it is statistically stationary (in a statistically inhomogeneous

problem the forcing term may vary with position). It is easy to gener-

alize the random process expansion for such problems (see Ref. 5, Section
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II). Recently, Saffman (11) has used this kind of stationary expansion

to deal with turbulent diffusion, and has obtained some very promising

results in this way. We formulate the problem for stationary, incom-

pressible real turbulence and obtain the equilibrium spectrum in that

case. The result is k "2 in the inertial range. Dryden (13 ) has observed

approximately such spectral behavior for turbulence at moderate Reynolds'

number. This spectrum has been suggested by Townsend, using a kinemat-

ical argument (the discussion here gives the results using the dynamics).

The flow realizations leading to various spectral laws will be dis-

cussed. In particular, as is known, k"2 is characteristic of flows

with near discontinuities, or intermittences.

A hypothesis is proposed concerning the form of the non-Gaussian

term in the velocity-field representation. From this hypothesis the

inertial transfer is obtained and a correction to mixing-length theory

is proposed.
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II. DRIVEN TURBULENCE

We develop the equations for stationary turbulence in an incom-

pressible fluid, relying on previous work for some of the details.
(3 -5)

Define the Fourier transform of the velocity field

ui(k,t) f e i k- r' ui(r,t)dr

(and similarly for f). The Fourier transform of the incompressible

Navier-Stokes equation is

& + vk 2 )uii!E f (2)- PQ~ u' (k - k'*)u (!El)dk' + fiQk't)

(2.1)

wi th

k iU, = 0

and

PijIQE) - kIPij(k) + kjP i!k)

and

P ij(k) = 6ij -k k'2k

The given forcing term f will be assumed to be statistically homogen-

eous and Gaussian and confined to large-scale effects. That is, it is

supposed that f vanishes for k larger than an energy-containing wave

number kO. The first two random processes in the Cameron-Martin-Wiener

representation are
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tH8) (E1 t2. t1,t2) t H 1 (rt 1  ~H'(rEi 2) 8ij 8(E1  -r2)6(tl Y 2

(2.2)

with the covariance property

( IH ' (r 1 t iHP %'Yt) IN 86j 6(r - E2)6(tl Y 2

The presubacript t indicates a transformation (as yet unspecified) in

the basic white-noise process. We discuss these transformations below.

We shall suppose later that the turbulence is statistically sta-

tionary (it is known that certain necessary conditions must be imposed

for stationarity); (1)and that it is ( t least locally) statistically ho-
mogeneous and isotropic. We suppose con ergence sufficiently rapid

that the random field can be adequately represented by just the first

two terms in the nearly normal expansion at a given instant. Arguments

have been presented for the near Caussianity of energy-range turbulence.(5 )

We suppose the process to be nearly normal in the inertial range as

well. We have

ui(r~t) a ui1 +

IN fj KM1 (L - r;t,t#) HM1 (r',t')dr'dt'

+ fff K1ao(Er E1- - E.2; tltlvt2
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t F (r - , t,tI) HtM(r"'t')dr" dt'

+ fff F ( 2 ) (r - LI r. -Et2' t,t 1 1 t 2 )

x H (r2) r2 ; t,t 2 )drdr.2dt dt 2  (2.4)

We suppose that our representation is such that we can use the mani-

festly statistically homogeneous form involving kernels that are spa-

tial functions of the difference variable. The transformation of the

basis in time represented by tHM is assumed to have this character-
istic.

Consider the behavior of the Cameron-Martin-Wiener (C-M-W) representation

in time. It is known (6-8 ) that the relation of the random process to

a given representation changes in time, in many nonlinear dynamical

problems, in a way analogous to a relative rotation of a vector with

respect to its coordinate system. Thus if we consider a nearly normal

process, ui, at some instant of time, we may think of the first term

in the representation [i.e., the first term of (2.3)] as the projection

of the process on the "Gaussian" axis, and similarly for the second

term on the lowest-order "non-Gaussian" axis. Then as time goes on,

although the process may remain nearly normal, there is a rotation of

the process relative to the axes, giving different components at later

times on the various axes. In this language the averages (the moments)

correspond to vector-dot products of the various quantities, and these

products are independent of the coordinate system used in their calcu-

lation. The moments are correctly given by any representation that is

complete, and the one used here is complete, so we can always expect

correct results, even at later times when the process has transformed.

But of course it may be necessary to use more terms in the representa-

tion as time goes on. There is a 'best" representation for a nearly

normal process at any time, which yields a maximum value for the pro-

jection on the "Gaussian" axis, but there are special difficulties for

an effort directed toward finding this "best" representation. (9-10) This
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kind of transformation of the representation can occur even for sta-

tionary processes. Thus, although at a given time the stationary pro-

cess may be representable by the first term in a nearly normal expan-

sion, in general at a later time higher-order terms will be needed.

Furthermore for the specified stationary Gaussian force, _, we could

at any instant use one term; but the "best" velocity-field representa-

tion is transforming, and since we must use the same representation

for the two, we must allow the possibility of transformation even for

the force. This reflects in the requirement that the kernel for the

force in (2.4) must be a separate function of the times t and t', and

not a function of just the difference. At a given time, say t - 0,

we can for a Gaussian force and a homogeneous and stationary process,

choose a "best" representation. The force then has only the first term

of (2.4) and all kernels are functions of the space difference varia-

bles. Our work here will be mainly concerned with the use of such a

fixed representation.

Returning to (2.1) we construct the usual energy equation. Mul-

tiply by the velocity at a second wavenumber (and the same time), sym-

metrize and average to find,

P + ~k'+ k2)](u (k )u (k2) (2.")-3P (
at + 1  2 _ 1

x J (u (kI - k')u (k')uj(k2 ))dk'

+ (f (kl)uj (k2)

+ same, interchange subscripts ij
and variables kl, k2

(2.5)

For homogeneous processes we know that

(u (kl)uj(k2)) V, k + k - 0

(2.6)
0, otherwise
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where V is the volume of the turbulence. There are similar relations

for other moments.
(14)

Using the usual definitions we have

(k)= (2T k2 (uik)u*(k)) (2.7)

and for isotropic processes (2.6) becomes

(L + 2,k2) E(k) = T(k) + S(k) (2.8)

where

T(k) = - (2r)- 5 k 2 P, e(k) f (u,(k - k')u,(k')ui(-k))dk' + c.c. (2.9)

S(k) - (fi(k)u*(k)) + c.c. (2.10)

(Actually vanishes for stationary processes.) Here c.c. stands for

the complex conjugate of a preceeding term.

From the properties of the representation (2.3) we know that to

lowest order in u(2 ) , the transfer can be written

T(k) - - (r- 5k2 P Q) (1()( - !E, (2) ,k) (1) (!

(2.11)

+ u( 1 )(k - k')u(1)()u (2) (-k))dk' + c.c.

where u(J)(k) are the Fourier transforms of u(J)(r), time dependence

implicit. To write the transfer, we need information about the non-

Gaussian term. A hypothesis for u(2) is discussed below. T(k) - 0

in the inertial range, i.e., for k0 < k < viscous wave number, when

the process is in equilibrium.

For a stationary process i(k) - 0 for all k. This gives us a con-

dition on the (dominant) Gaussian term alone. If we take the derivation
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of (2.9) and use (2.1) to replace d_, we find T is composed of fourth-

order moments of the velocity plus third-order moments involving the

velocity (alone and with the force). Then we suppose that lu( 2 ' I << ju()I,

and retain in the fourth-order moment only u(1) terms to find [correct

to terms 0(u(2) 2 )1

T(k) - 0 ?-- (k) + T(V)(k) + T~s(k) (2.12)

where i(v) stands for the terms proportional to v; we have

" 4 k2 j2rk 2 (k"2 - 3k) - (k"2 -k )
4~k k2 Ik 2 k 2k"2

+ 2k"2 (k 2 - k2)*(1)(k",k-,k)1dk1

(2.13)

where

SEl(k") 1El(k') E (k)(M()kk~n 2 2- (2.14)

16 2 k,2 k kk'2

and

Q k + V4 + k"4 - 2k2k'2 - 2k'2k 2 - 2k 2k2  (2.15)

k + k' + k" - 0 (2.16)

The time derivative, ( + (v), of the transfer is exactly that

obtained by Proudman and Reid (15 ) using the zero-fourth-cumulant hy-

pothesis. (We employ a notation similar to that of Ref. 15 here. The

viscous term, T(v), will not be used here.)

In (2.13), EI is the "Gaussian" part of the energy. It is obtained

from (2.7),
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E (k) - r2,,2V] k 2 u (k)u1 (-k). (2.17)

From (2.2) and (2.3) using the transform we have at the initial

instant t = 0,

E1 (k,O) = 2(2-")' 2k2 f IK(t)(k; O,t')12dt' (2.18)

with KM defined implicitly by

K(1 P(k; Otj) = P (k)K( (k; O,t') (2.19)
iJ

and with [see (2.3)1

0 ,t') = J' e aE j Ki'j)(r; O,t')dr_. (2.20)

To repeat, it is understood that the representation will change at a

later time; we use the representation at t = 0.

The source contribution is

i(s) = 2V (2)'5 k 2 p Q0 f dk' (2u (k - k')f (k')ui(-k)

+ u (k - k)u (k')f i(-k) + c.c.

(2.21)

To lowest order each term for T(S) initially is of order u(2 ) just as

for the transfer (2.11).

There are important differences between the work in Ref. 15 and

the present discussion. The process here is statistically stationary

(and of course driven). The equations can be used only at or near a

nearly normal statistical equilibrium. In order to follow the approach
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to equilibrium, we should have to integrate the equations for the ker-

nels in the nearly normal expansion in the usual way. (5.6) If the ini-

tial process is near enough to its equilibrium form, this can be done

with a rapidly converging series. However, if the initial process is

far from equilibrium, the intermediate stages may be highly non-Gaus-

sian, and the series poorly convergent. Then the Gaussian part of the

derivative of the transfer, i(1) of (2.13), will not be a good approx-

imation and the expansion fails. This has occurred in some previous

computations making use of the zero-fou:rth-cumulant approximation, (16,18)

where (nonphysical) negative energy spectra have been found.

To determine (v), we note that we need the Fourier transforms of

the triple velocity correlation. (15 ) A knowledge of the non-Gaussian

term u (2) in the viscous range is needed for their evaluation. We

shall examine only the energy and inertial ranges in this paper.

The time derivatives of all moments vanish for stationary processes.

One may wonder why we focus attention on T(k) [see (2.12)]. In the in-

ertial range the derivatives of even moments are small for nearly normal
(2)processes since those derivatives involve u . Tale derivative, T, in-

volving the first important odd moment is chosen because of its central,

physical role.
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III. INERTIAL RANGE EQUILIBRIUM

At equilibrium we have in the inertial range Esee (2.13)], assum-

ing we can separate the viscous, inertial, and energy ranges in the

usual way,

0 -T( 1 )(k) k 2 f Q {2Fk2,(k 2 - 3k) - (k"2 - k'2 )]2 (kk'k")

+ 2k"2 (k" 2 - k2 )i(k',k",k)}dk' (3.1)

with

k)(k,k',k") [E (3.2)
16-"22 k22 k 2

for k0 < k < k, and k is that wavenumber at which viscous effects are

no longer negligible.

We continue by solving for the spectrum E,, which will cause the

derivative of the transfer to vanish in the inertial range. Note first

the interesting result that the "equipartition" form E k 2 is an
2 -n(exactly Gaussian) solution. Look for an algebraic form, E, - (c/2ry )k

Substitute in (3.1) - (3.2), make changes of variable, and find

0 1 - 12 - 13 (3.3)

with

b c2
bjC (l - 2P~r

Sf r'ndr j dv, j - 1,2,3 (3.4)
aj -1 ( 2r4 + r2)cj

with quantities given In Table 1.
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Table 1

QUANTITIES IN (3.4)

a b Cj P (r,4) 01

1 0 1 1 - 2r4 + r 3 1

0 1 + r2  3rt + 2r2 2  n+ 2

3 + r 2 -3r + 2r 2 2  n+ 2
2

We look for the root of (3.3); the right side diverges (with op-

posite sign) for n - I+ , 3". A quantity proportion to T -- the right

side of (3.3) -- is plotted in Fig. 1. The calculation is complicated

by cancelling singularities in (3.4). The root is clearly very near

to n = 2, if not exactly that value. We have not calculated the dashed

portion of the curve in Fig. 1; we merely sketch those divergent por-

tions.

It is known (see Ref. 3) that, for a one-dimensional process, 
k"2

is the spectrum which is characteristic of near-discontinuities in the

flow. It is easy to show that this is also the case for some three-

dimensional flows (see Appendix). Real turbulent flows certainly ex-

hibit near-discontinuities and might be supposed to have an energy spec-

trum range with a k "2 behavior. Indeed early measurements showed ap-

proximately this behavior, as can be seen in Fig. 2.

From (3.1) we see we cannot determine the coefficient of k "2 .

Guided by earlier experimental works (Fig. 2 and Ref. 14, Fig. 7.8)

for the energy range we write

E(k) = C U'2 k"2  (3.5)1
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4-wC2

123

Fig. 1I- Plot of calculation for the equilibrium
spectrum -- the root of Eq. (3.3).
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Lnxx

I.. .. N IH

U

Fig. 2 Energy spectra from Dryden, Ref. 13.

Comparison of National Bureau of Standards and National Physi-
cal Laboratory measurements of the spectrum of turbulence,
plotted nondimensionally.

At left, NES values 40 (-) and 160 (+) inches behind 1-inch
mesh screen at U =40 ft/sec.

At right, NPL values 82 inches behind 3-inch mesh screen at
15 (.), 20 (x), 25 (+), 30 (6), and 35 ft/sec.

The reference curve in each case is the curve

UF.n).. , 4
L 2 2 2x n4n L

1+ U

Uis the mean speed, L is the integral f R dx, R is tie
0

correlation between the fluctuations at two points separated
by the distance x in the direction of flow, n is the frequency
and E(n) is tile fraction of the total energy of the turbulence
arising from frequencies between n and n + dn.
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= f T(k)dk (3.6)

Energy
Range

with

i f (kdk (3.7)

The Kolmogoroff spectrum k53)may depend upon higher-order

terms in the C-M-W series.
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IV. MIXING-LENGTH CORRECTION

To find T(k) for the statistically stationary process given in

(2.11) we see from (2.3) that we shall need a knowledge of K (2 ) given

in terms of the representation at t 0 0, i.e., in terms of H11 ).' "
(5) ~ t-O C

In calculating for turbulence experiments, good results have been

obtained using a hypothesis for this kernel (stated in terms of the

Fourier transform)

(,k) Pi (k + k)K 1 l(k)K (k). (4.1)
ijk =1 -2 2 i -to ( -2 - 6k -

Incidentally this is the form of K(2) for short times if the process

is initially exactly Gaussian Csee Ref. 5, Eq. (3.14)]. Here t0 is a

characteristic time of order the correlation time; in Ref. 5 t0 (there

called aO) was found to be 0.4 for some turbulence experiments. We

substitute (4.1) in (2.11) and use averages of products of processes

(see Ref. 5) and (2.18) to find

T(k) - (4) 1 t k2 {2 f Q(k.k'.k") [k4 - k 12 (kEk) + 2(k.k')]0k 2 k ,2t 2  k 4 -#2 (k k )

X ELE Ek ') dk'

k2  k'2  -

- Q(k,k') F<4 - k2(!' - 2,<,<')(k.,")l
k2k '2k 2

X E(k") k,,2 dk' (4.2)

k'2  V 2  -)

We use the definitions of Section II and assume that the energy spec-

trum is primarily given by its Gaussian part [here just E(k)] at least

for moderate wavenumbers.

It is interesting that this transfer is, except for a coeffici-

ent, equal to i(1), the part of T using lowest order (Gaussian)
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contributions [see (2.12) through (2.15)]. In the inertial range,

E- k_2 gives zero transfer using (4.1) -- as, in the previous section

it gave zero T. Thus (4.1) is one solution for K giving T - 0 in

the inertial range. The same correspondence held for Burger's model

(see Refs. 3 and 6). We are interested in this section in E and T

for small k in the energy range.

Consider a version of the mixing-length theory. One can define

an eddy viscosity to account for the nonlinear transfer [refer to (2.8)1,

treating the effect of that transfer on the large eddies,

2 VD(k)k2 E(k) - -T(k) (4.3)

or

2
VD(k) = -T(k)/[2k E(k)j . (4.4)

It is sometimes convenient to use (4.3) with vD approximated, in

place of the full, nonlinear problem. We expand the expression for

VD about k = 0 using the functions above.

To lowest order, the angular integrations in (4.2) for T(k) can

be performed. The result of these manipulations is

VD() tO 2 E E k2 dk' (4.5)

We suppose that the curvature of E(k) doesn't vanish at the origin for

the nonhomogeneous turbulence being approximated here. Also we define

the turbulent energy per unit mass,

E T r E(k')dk' (4.6)
0
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The second term in (4.5) tends to emphasize the larger-scale part of

the process, reducing the eddy viscosity. The eddy viscosity given

by (4.5) is clearly of the order of the usually assumed value, for we

have

ET - u

with u' the fluctuation velocity, so [from (4.5)]

VD - t 0 E T

(4.7)

with I the turbulence scale. In the theory under discussion, it is not

evident from the start that a form like (4.5) would be obtained at k - 0.

The result is felt to be encouraging for the use of the nearly normal

expansion.

We now continue to the next order term in k. To simplify the dis-

cussion we use an estimate for E(k). This restriction isn't necessary

but is convenient. Set

1 ,, 2

E(k) - (O)k k < k0

(4.8)
= 6 E E2/3k'5/3 k > k

11 T 0

where k0 is the position of the maximum of E, and E is assumed to be

continuous there. The larger wavenumber behavior is of course the Kol-

mogoroff spectrum. The result, to lower order, for (4.4) is

,JD(k) t 0 ET [0.123 + 0.139 (t921

(4.9)
+1 "DOk2

-V D(0) + 1-v
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Use of the spectrum (4.8) permits us to calculate all integrals in-

volved. We can plausibly replace the nonlinear terms in the Navier-

Stokes equation by vD(k)k 2u. In physical space, the modified Navier-

Stokes equation is

Iu + v} 7u , (4.10)

0 oi = {VD(0) - 2 (O)v 2 + 2 (.0

where in turbulent flows v is negligible. The coefficients are found

from (4.9). (It is interesting that the two coefficients in (4.9) are

of the same order.) The relation provides a one-parameter form for the

two coefficients (remembering that k0 is the position of the spectral

maximum). An experimental check would be helpful.
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V. CONCLUSIONS

We have considered the use of the Cameron-Martin-Wiener represen-

tation for statistically stationary (and inhomogeneous) turbulence.

Difficulties with the time transformation of the white-noise process

are avoided by using the representation only at one instant. By deal-

ing with the time derivative of the energy-transier term, we obtain a

formulation similar to the zero-fourth-cumulant approximation -- though

differing from it in important ways. From this formulation, a k"2 en-

ergy spectrum is obtained and discussed. Using a hypothesis, supported

by previous computations, a useful correction to mixing-length theory

is found.
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Appendix

FLOW REALIZATIONS WITH E -
k-2

Some velocity flows with near-discontinuities have spectra with

large wavenumber behavior like k 2 . Townsend(17 ) has shown this spec-

trum results for flows with random shear discontinuities, i.e., vortex

sheets. Consider a flow made up of spheres rotating with angular ve-

locity w. We examine first the Fourier transform of one such sphere:

u(k) = e i k ' r u(r)dr (A.1)

with (in spherical coordinates)

u(r) = 0wr sin 0, r < a

(A.2)
-0, r>a

where is the unit azimuthal vzctor. Let us consider a typical value,

e.g., u (ki). Using the method of stationary phase it is easy to showy
that for ka >> 1,

2Uy(ki.) ,- °- -  (A.3)

y k2

Suppose we have a random set of N mich spheres in a finite volume

V. The energy spectrum (14 ) is found (using volurte averaging)

k2Nu 2 (k)
E(k) V (A.4)

From (A.3) we see a typical value

E(k) - wa k- 2  (A.5)
V
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It is easy to show many other discontinuous flows with this spectral

behavior. It is known that the corresponding behavior holds for nearly

discontinuous, one-dimensional time series. 
(3)
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